S SERIES PUMPS
S2A’s

All Materials And Voltages

MANUAL
PART 3 of 3
MAINTENANCE AND REPAIR
WITH TROUBLESHOOTING

THE GORMAN-RUPP COMPANY • MANSFIELD, OHIO
GORMAN-RUPP OF CANADA LIMITED • ST. THOMAS, ONTARIO, CANADA
©Copyright by the Gorman-Rupp Company
Thank You for purchasing a Gorman-Rupp S Series Pump. Read this manual carefully to learn how to safely maintain and service your pump. Failure to do so could result in personal injury or damage to the pump.

A set of three manuals accompanies your pump. The Installation/Operation Manual contains essential information on installing and operating the pump, and on making electrical connections. The Parts List Manual provides a performance curve, a pump model cross-section drawing, and parts list for your pump.

This Maintenance and Repair Manual provides troubleshooting and maintenance instructions required to properly diagnose operational problems, and to service the pump components. Pump motor maintenance may be performed only by a Gorman-Rupp authorized Submersible repair facility, or the factory. Otherwise, the pump warranty will be negated, and damage to the pump, and injury or death to personnel can result. Contact the factory for the authorized repair facility closest to you.

As described on the following page, this manual will alert personnel to known procedures which require special attention, to those which could damage equipment, and to those which could be dangerous to personnel. However, this manual cannot possibly anticipate and provide detailed precautions for every situation that might occur during maintenance of the unit. Therefore, it is the responsibility of the owner/maintenance personnel to ensure that only safe, established maintenance procedures are used, and that any procedures not addressed in this manual are performed only after establishing that neither personal safety nor pump integrity are compromised by such practices.

If there are any questions regarding the pump which are not covered in this manual or in other literature accompanying the unit, please contact your Gorman-Rupp distributor or the Gorman-Rupp Company:

The Gorman-Rupp Company
P.O. Box 1217
Mansfield, Ohio 44901--1217
or:
Gorman-Rupp of Canada Limited
70 Burwell Road
St. Thomas, Ontario N5P 3R7

CONTENTS

SAFETY -- SECTION A
TROUBLESHOOTING -- SECTION B
ELECTRICAL TESTING ... PAGE B -- 3
Test Equipment ... PAGE B -- 3
Voltage Imbalance ... PAGE B -- 3
Motor and Power Cable Continuity .. PAGE B -- 4
Insulation Resistance .. PAGE B -- 4

PUMP MAINTENANCE AND REPAIR -- SECTION C
GENERAL INFORMATION .. PAGE C -- 1
Lifting .. PAGE C -- 1
TYPICAL PUMP ASSEMBLY .. PAGE C -- 2
PUMP ASSEMBLY PARTS IDENTIFICATION LIST PAGE C -- 3
TERMINAL HOUSING AND CABLE ASSEMBLY PAGE C -- 4
TERMINAL HOUSING AND CABLE ASSEMBLY PARTS IDENTIFICATION LIST PAGE C -- 5
PUMP END DISASSEMBLY ... PAGE C -- 6
PUMP END REASSEMBLY ... PAGE C -- 8
MOTOR DISASSEMBLY .. PAGE C -- 11
MOTOR REASSEMBLY .. PAGE C -- 14
FINAL ASSEMBLY .. PAGE C -- 19
VACUUM/PRESSURE TESTING ... PAGE C -- 20
LUBRICATION .. PAGE C -- 20
RECORDING MODEL AND SERIAL NUMBERS

Please record the pump model, serial number, voltage, and motor frame size in the spaces provided below. Your Gorman-Rupp distributor needs this information when you require parts or service.

Pump Model: __________________________
Serial Number: _______________________
Voltage: ____________________________
Phase: ______________________________

WARRANTY INFORMATION

The warranty provided with your pump is part of Gorman-Rupp’s support program for customers who operate and maintain their equipment as described in this and the other accompanying literature. The integral electric motor must be operated through the control furnished with the pump as standard equipment. Please note that should the equipment be abused or modified to change its performance beyond the original factory specifications, the warranty will become void and any claim will be denied.

All repairs to the pump motor must be performed by a Gorman-Rupp authorized Submersible repair facility or the factory. Any repairs to the motor assembly performed by the customer or an unauthorized repair facility negates motor warranty.

The following are used to alert personnel to procedures which require special attention, to those which could damage equipment, and to those which could be dangerous to personnel:

DANGER!

Immediate hazards which WILL result in severe personal injury or death. These instructions describe the procedure required and the injury which will result from failure to follow the procedure.

WARNING!

Hazards or unsafe practices which COULD result in severe personal injury or death. These instructions describe the procedure required and the injury which could result from failure to follow the procedure.

CAUTION

Hazards or unsafe practices which COULD result in minor personal injury or property damage. These instructions describe the requirements and the possible damage which could result from failure to follow the procedure.

NOTE

Instructions to aid in installation, operation, and maintenance or which clarify a procedure.
SAFETY – SECTION A

The following information applies throughout this manual to Gorman-Rupp S Series submersible motor driven pumps.

This manual will alert personnel to known procedures which require special attention, to those which could damage equipment, and to those which could be dangerous to personnel. However, this manual cannot possibly anticipate and provide detailed instructions and precautions for every situation that might occur during maintenance of the unit. Therefore, it is the responsibility of the owner/maintenance personnel to ensure that only safe, established maintenance procedures are used, and that any procedures not addressed in this manual are performed only after establishing that neither personal safety nor pump integrity are compromised by such practices.

This manual contains essential information on troubleshooting and maintaining the pump. In addition to this manual, see the separate literature covering installation and operation, pump parts, and any optional equipment shipped with the pump.

Before attempting to open or service the pump:

1. Familiarize yourself with this manual.
2. Lock out incoming power to the control box to ensure that the pump will remain inoperative.
3. Allow the pump to completely cool if overheated.
4. Close the discharge valve (if used).

WARNING!

This pump is not designed to pump volatile, explosive, or flammable materials. Do not attempt to pump any liquids for which your pump is not approved, or which may damage the pump or endanger personnel as a result of pump failure. Consult the factory for specific application data.

WARNING!

Before connecting any cable to the control box, be sure to ground the control box. Refer to the Control Box manual for the suggested grounding methods.

WARNING!

The pump motor is designed to be operated through the control box furnished with the pump. The control box provides overload protection and power control. Do not connect the pump motor directly to the incoming power lines.

WARNING!

The electrical power used to operate this pump is high enough to cause injury or death. Obtain the services of a qualified electrician to make all electrical connections. Make certain that the pump and enclosure are properly grounded; never use gas pipe as an electrical ground. Be sure that the in-
coming power matches the voltage and phase of the pump and control before connecting the power source. Do not run the pump if the voltage is not within the limits. If the overload unit is tripped during pump operation, correct the problem before restarting the pump.

WARNING!

The electrical power used to operate this pump is high enough to cause injury or death. Make certain that the control handle on the control box is in the OFF position and locked out, or that the power supply to the control box has been otherwise cut off and locked out, before attempting to open or service the pump assembly. Tag electrical circuits to prevent accidental start-up.

WARNING!

Never attempt to alter the length or repair any power cable with a splice. The pump motor and cable must be completely waterproof. Injury or death may result from alterations.

WARNING!

All electrical connections must be in accordance with The National Electric Code and all local codes. If there is a conflict between the instructions provided and N.E.C. Specifications, N.E.C. Specifications shall take precedence. All electrical equipment supplied with this pump was in conformance with N.E.C. requirements in effect on the date of manufacture. Failure to follow applicable specifications, or substitution of electrical parts not supplied or approved by the manufacturer, can result in severe injury or death and void warranty.

WARNING!

After the pump has been installed, make certain that the pump and all piping or hose connections are secure before operation.

WARNING!

Approach the pump cautiously after it has been running. Although the motor is cooled by the liquid being pumped, normal operating temperatures can be high enough to cause burns. The temperature will be especially high if operated against a closed discharge valve. Never operate against a closed discharge valve for long periods of time.

WARNING!

Do not attempt to lift the pump by the motor power cable or the piping. Attach proper lifting equipment to the lifting device fitted to the pump. If chains or cable are wrapped around the pump to lift it, make certain that they are positioned so as not to damage the pump, and so that the load will be balanced.

WARNING!

Obtain the services of a qualified electrician to troubleshoot, test and/or service the electrical components of this pump.
TROUBLESHOOTING – SECTION B

Review all SAFETY information in Section A.

WARNING!

The following precautions should be taken before attempting to service the pump; otherwise, injury or death could result.

1. Familiarize yourself with this manual and with all other literature shipped with the pump.
2. Lock out incoming power to the pump or control box to ensure that the pump will remain inoperative.
3. Allow the pump to completely cool if overheated.
4. Check the temperature before opening any covers, plates or plugs.
5. Close the discharge valve (if used).

WARNING!

The electrical power used to operate this pump is high enough to cause injury or death. Obtain the services of a qualified electrician to troubleshoot, test and/or service the electrical components of this pump.

NOTE

Many of the probable remedies listed below require use of electrical test instruments; for specific procedures, see **ELECTRICAL TESTING** following the chart.

Table 1. Trouble Shooting Chart

<table>
<thead>
<tr>
<th>TROUBLE</th>
<th>POSSIBLE CAUSE</th>
<th>PROBABLE REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUMP FAILS TO START, OVERLOAD UNIT NOT TRIPPED (MANUAL MODE)</td>
<td>Power source incompatible with control box. No voltage at line side of circuit breaker. Open circuit in motor windings or power cable. Defective motor power cable. Motor defective. Liquid level device or control circuits improperly connected to main control box. Level sensing device(s) improperly positioned. Level sensing device(s) fouled with mud or foreign material.</td>
<td>Correct power source. Check power source for blown fuse, open overload unit, broken lead, or loose connection. Check continuity. Replace cable. Check for and replace defective unit. Check wiring diagrams; correct or tighten connections. Position device(s) at proper level. Clean sensing device(s).</td>
</tr>
<tr>
<td>TROUBLE</td>
<td>POSSIBLE CAUSE</td>
<td>PROBABLE REMEDY</td>
</tr>
<tr>
<td>---------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>(AUTOMATIC MODE) (CONT’D.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLOAT TYPE SENSING DEVICE(S) TANGLED OR OBSTRUCTED.</td>
<td>Check installation for free movement of float.</td>
<td></td>
</tr>
<tr>
<td>DEFECTIVE LIQUID LEVEL SENSING DEVICE(S) OR CONTROL PANEL.</td>
<td>Repair or replace defective unit(s).</td>
<td></td>
</tr>
<tr>
<td>OVERLOAD UNIT TRIPS</td>
<td>Low or high voltage, or excessive voltage drop between pump and control box.</td>
<td>Measure voltage at control box. Check that wiring is correct type, size, and length. (See Field Wiring Connections, Section B).</td>
</tr>
<tr>
<td></td>
<td>Defective insulation in motor windings or power cable; defective windings.</td>
<td>Check insulation resistance; check continuity.</td>
</tr>
<tr>
<td></td>
<td>Impeller jammed due to debris or insufficient clearance.</td>
<td>Disassemble pump and check impeller.</td>
</tr>
<tr>
<td></td>
<td>Bearing(s) frozen.</td>
<td>Disassemble pump and check bearing(s).</td>
</tr>
<tr>
<td>MOTOR RUNS, BUT PUMP FAILS TO DELIVER RATED DISCHARGE</td>
<td>Discharge head too high.</td>
<td>Reduce discharge head, or install staging adaptor and additional pump.</td>
</tr>
<tr>
<td></td>
<td>Low or incorrect voltage.</td>
<td>Measure control box voltage, both when pump is running and when shut-off.</td>
</tr>
<tr>
<td></td>
<td>Discharge throttling valve partially closed; check valve is installed improperly.</td>
<td>Open discharge valve fully; check piping installation.</td>
</tr>
<tr>
<td></td>
<td>Discharge line clogged or restricted; hose kinked.</td>
<td>Check discharge lines; straighten hose.</td>
</tr>
<tr>
<td></td>
<td>Liquid being pumped too thick.</td>
<td>Dilute liquid by heating if possible.</td>
</tr>
<tr>
<td></td>
<td>Strainer screen or impeller clogged.</td>
<td>Clear clog(s). Stop pump; back flow may flush away debris.</td>
</tr>
<tr>
<td></td>
<td>Insufficient liquid in sump or tank.</td>
<td>Stop pump until liquid level rises.</td>
</tr>
<tr>
<td></td>
<td>Worn impeller vanes; excessive impeller clearance.</td>
<td>Check impeller and clearance. See PUMP END DISASSEMBLY.</td>
</tr>
<tr>
<td></td>
<td>Pump running backwards.</td>
<td>Check direction of rotation and correct by interchanging any two motor leads at control box. (See Pump Rotation, Section C).</td>
</tr>
</tbody>
</table>
Table 1. Trouble Shooting Chart (cont.)

<table>
<thead>
<tr>
<th>TROUBLE</th>
<th>POSSIBLE CAUSE</th>
<th>PROBABLE REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUMP RUNS WITH EXCESSIVE NOISE OR VIBRATION</td>
<td>Pumping entrained air.</td>
<td>Check liquid level in sump; check position of pump and liquid level sensing device(s).</td>
</tr>
<tr>
<td></td>
<td>Damaged or unbalanced impeller.</td>
<td>Replace impeller.</td>
</tr>
<tr>
<td></td>
<td>Discharge piping not properly supported.</td>
<td>Check piping installation.</td>
</tr>
<tr>
<td></td>
<td>Impeller jammed or loose.</td>
<td>Check impeller.</td>
</tr>
<tr>
<td></td>
<td>Motor shaft or bearings defective.</td>
<td>Disassemble pump and check motor and bearings.</td>
</tr>
<tr>
<td></td>
<td>Pump cavitation.</td>
<td>Reduce discharge head, or restrict flow on low head applications.</td>
</tr>
</tbody>
</table>

ELECTRICAL TESTING

If you suspect that pump malfunctions are caused by defects in the motor, power cable or control box, perform the following checks to help isolate the defective part.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammeter</td>
<td>To check AC Voltage and current (amperage)</td>
</tr>
<tr>
<td>Ohmeter</td>
<td>To measure resistance (ohms) to ground</td>
</tr>
</tbody>
</table>

WARNING!

Obtain the services of a qualified electrician to troubleshoot, test and/or service the electrical components of this pump.

CAUTION

Be certain to refer to the wiring diagram(s) in the Installation Section of this manual before reconnecting any electrical components which have been disconnected.

Test Equipment

A volt/amp/ohmmeter and megohmter of adequate range and quality will be required to conduct the following electrical tests. The suggested equipment indicated below is commercially available, or an equivalent substitute may be used.

Voltage Imbalance

Each phase of the incoming three-phase power must be balanced with the other two as accurately as a commercial voltmeter will read. If the phases are balanced, check out the motor as described below. If the phases are out of balance, contact your power company and request that they correct the condition.

a. Use a voltmeter, amprobe, or equivalent meter to read the voltage across terminals 1 & 2, 2 & 3, and 1 & 3 in the control box. All three measured voltages must be the same, as accurately as the meter will read. If possible, measure the voltage with the pump off, with the pump running but out of the water, and with the pump running in the water at full load. All the measured voltages at each condition must be the same.

b. Use an amprobe or equivalent meter to measure the current draw of each phase while the pump is running at full load and at no load. All three amperage readings must
be the same at each condition, as accurately as the meter will read. Nominal amperage values are listed in Table 1, but these apply only when the actual voltage at the site is the nominal voltage listed.

c. If the voltages are balanced with the pump off, but are unbalanced when the pump is running, a thorough check of the power source, all interconnecting cables, and the pump motor is required to isolate the defect.

Motor And Motor Power Cable Continuity

To check continuity, zero-balance the ohmmeter set at the RX1 scale, and test as follows:

a. Disconnect the motor power cable leads from the control box and connect the test leads to any two of the three power cable leads (not to the green ground lead or yellow ground check lead). If there is a high resistance reading on the ohmmeter, there is an open or broken circuit caused by a break in the power cable or motor windings, or by a bad connection between the motor and the power cable. Switch one test lead to the third power lead, and test again.

b. If an open or broken circuit is indicated, check the power cable for obvious damage, and replace as necessary (see MAINTENANCE AND REPAIR). If there is no apparent damage to the motor cable, remove the terminal housing (see MAINTENANCE AND REPAIR) and check the continuity of each power cable lead at the terminal posts.

NOTE
When shipped from the factory, the connections between the power cable leads and the terminal posts were encapsulated in heat shrink tubing and bonded to the terminal plate to provide a watertight seal. In service, these connections may have been potted by the pump operator. Do not cut the tubing or potting away unless absolutely necessary. Check the continuity of each lead from the motor side of the terminal plate. If the continuity is good, there is no need to remove the tubing or potting material. If there is no continuity through the lead, remove the tubing or potting from only that terminal, and check for a loose connection. Be sure to re-
place the tubing or potting and allow adequate drying time before putting the pump back into service. (See Power Cable Reassembly, Section E).

c. If an open circuit still exists after each lead (terminal) has been tested and tightened, then the entire motor power cable must be replaced. Splicing or other means of repair are not recommended.

d. If no break is found in the power cable, check the motor leads for continuity. If the test reading indicates an open or broken circuit, there is an open circuit in the motor.

NOTE
It is recommended that a pump with a defective motor be returned to Gorman-Rupp, or to one of the Gorman-Rupp authorized Submersible Repair Centers.

Insulation Resistance

To check insulation, zero-balance the ohmmeter set at the RX100K scale, and test as follows:

a. Disconnect the motor power cable leads from the control box. Connect one test lead to the power cable green ground lead, and touch the other test lead to each of the three power leads in turn.

b. The reading obtained will indicate resistance values in both the power cable and the motor windings. If the resistance reading is infinity (∞), the insulation is in good condition. If the reading is between infinity (∞) and 1 megohm, the insulation is acceptable but should be rechecked periodically. If the reading is less than 1 megohm, the insulation should be checked more closely; a reading of zero indicates that the power cable or the motor is grounded.

c. To determine whether the power cable or the motor is grounded, remove the terminal housing (see MAINTENANCE AND REPAIR), disconnect the motor leads from the motor terminals, and test the power cable leads and motor leads separately.

Capacitors

The start capacitor is designed to split the electrical phase during the initial power surge at motor star-
The start capacitor is controlled by the start relay at motor startup. When the motor reaches load speed, the start relay cuts out and permits the run capacitor to maintain operation. Both the start and run capacitors are located in the control box.

CAUTION

Before disconnecting the capacitor leads, discharge the capacitors using a screwdriver with an insulated handle, and place the blade across the two terminals of each capacitor to short the terminals.

Zero-balance the ohmmeter set to read RX100K, and test the capacitors as follows:

a. Disconnect the capacitor leads and remove the resistor from the start capacitor.

b. Place a test lead against each of the terminals of the start capacitor for a few seconds. If the ohmmeter needle moves toward zero then slowly drifts back to the left, the capacitor is good. If the needle remains at infinity (1) the capacitor is open; if the needle remains at zero, the capacitor is shorted. In either case, the capacitor must be replaced.

c. Test the run capacitor as in b. In addition, test the metal run capacitor for shorts to ground by touching one test lead to the capacitor case and the other lead to each of the capacitor terminals in turn. The ohmmeter should read infinity (1); if it does not, the capacitor is grounded and must be replaced.

Start Relay

The start relay is located in the control box.

Disconnect the two wires from relay terminals 2. Use a zero-balanced ohmmeter set to read RX100K, and touch one lead to relay terminal 2 and the other to relay terminal 5. The resistance reading should be between 1000 and 1500 ohms; if the reading is not in this range, the start relay is defective and should be replaced.

NOTE

With the exception of the motor assembly, repair of individual electrical components is not recommended. Replace defective and/or malfunctioning components.
PUMP MAINTENANCE AND REPAIR – SECTION C

GENERAL INFORMATION

Review all SAFETY information in Section A.

WARNING!

Do not attempt to service the pump assembly unless all power to the motor has been shut off at the control box; otherwise, injury or death could result.

Use a lifting device with sufficient capacity. If slings or chains are used to move the pump or components, make sure that the load is balanced; otherwise serious personal injury or death could result.

The maintenance and repair instructions in this manual are keyed to the sectional views, Figures C–1 or C–2, and the corresponding parts identification lists. Refer to the separate Parts List Manual for replacement parts.

Select a suitable location, preferably indoors, to perform required maintenance. All work must be performed by qualified personnel.

CAUTION

All repairs to the pump motor must be performed by a Gorman-Rupp authorized Submersible repair facility or the factory. Any repairs to the motor assembly performed by the customer or an unauthorized repair facility negates the warranty.

This Maintenance and Repair Manual provides troubleshooting and maintenance instructions required to properly diagnose operational problems, and to service the pump components. Pump motor maintenance may be performed only by a Gorman-Rupp authorized Submersible repair facility, or the factory. Otherwise, the pump warranty will be negated, and damage to the pump, and injury or death to personnel can result. Contact the factory for the authorized repair facility closest to you.

Check **TROUBLESHOOTING**, Section B to determine causes and remedies of pump problems. Disassemble the pump only as far as required.

Lifting

Use lifting equipment with a capacity of **at least five times the weight of the pump**, including the weight of any options or customer-installed accessories. Contact the factory or refer to the pump Specification Data Sheet for the weight of your pump. Discharge hose or piping must be removed before attempting to lift the pump.
Figure C – 1. Typical S2A Series Pump Assembly
Typical S2A Series Pump Assembly
Parts Identification List

Refer to the separate Parts List Manual for serviceable parts, part numbers and quantities.

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NAME</th>
<th>ITEM NO.</th>
<th>PART NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIFFUSER</td>
<td>27</td>
<td>HOISTING BAIL</td>
</tr>
<tr>
<td>2</td>
<td>IMPELLER</td>
<td>28</td>
<td>TERMINAL HOUSING AND CABLE</td>
</tr>
<tr>
<td>3</td>
<td>SEAL ASSEMBLY</td>
<td>29</td>
<td>RELIEF VALVE ASSEMBLY</td>
</tr>
<tr>
<td>4</td>
<td>INTERMEDIATE GASKET</td>
<td>30</td>
<td>STATOR ASSEMBLY</td>
</tr>
<tr>
<td>5</td>
<td>HEX HEAD CAPSCREW</td>
<td>31</td>
<td>ROTOR ASSEMBLY</td>
</tr>
<tr>
<td>6</td>
<td>HEX NUT</td>
<td>32</td>
<td>MOTOR HOUSING GASKET</td>
</tr>
<tr>
<td>7</td>
<td>LOCK WASHER</td>
<td>33</td>
<td>NAME PLATE</td>
</tr>
<tr>
<td>8</td>
<td>DISCHARGE FLANGE GASKET</td>
<td>34</td>
<td>DRIVE SCREW</td>
</tr>
<tr>
<td>9</td>
<td>DISCHARGE FLANGE</td>
<td>35</td>
<td>LOWER BALL BEARING</td>
</tr>
<tr>
<td>10</td>
<td>STUD</td>
<td>36</td>
<td>INTERMEDIATE</td>
</tr>
<tr>
<td>11</td>
<td>HEX NUT</td>
<td>37</td>
<td>MOTOR HOUSING DRAIN PLUG</td>
</tr>
<tr>
<td>12</td>
<td>STUD</td>
<td>38</td>
<td>SEAL CAVITY DRAIN/FILL PLUG</td>
</tr>
<tr>
<td>13</td>
<td>HEX NUT</td>
<td>39</td>
<td>DIFFUSER GASKET</td>
</tr>
<tr>
<td>14</td>
<td>LOCK WASHER</td>
<td>40</td>
<td>IMPELLER ADJUSTING SHIM SET</td>
</tr>
<tr>
<td>15</td>
<td>PIPE PLUG</td>
<td>41</td>
<td>BASE PLATE</td>
</tr>
<tr>
<td>16</td>
<td>ALLEN HEAD CAPSCREW</td>
<td>42</td>
<td>IMPELLER WASHER</td>
</tr>
<tr>
<td>17</td>
<td>MOTOR HOUSING</td>
<td>43</td>
<td>IMPELLER NUT</td>
</tr>
<tr>
<td>18</td>
<td>UPPER BALL BEARING</td>
<td>44</td>
<td>IMPELLER KEY</td>
</tr>
<tr>
<td>19</td>
<td>BEARING SPRING WASHER</td>
<td>45</td>
<td>WEAR PLATE</td>
</tr>
<tr>
<td>20</td>
<td>STUD</td>
<td>46</td>
<td>HEX HEAD CAPSCREW</td>
</tr>
<tr>
<td>21</td>
<td>HEX NUT</td>
<td>47</td>
<td>LOCK WASHER</td>
</tr>
<tr>
<td>22</td>
<td>LOCK WASHER</td>
<td>48</td>
<td>STUD</td>
</tr>
<tr>
<td>23</td>
<td>HEX HEAD CAPSCREW</td>
<td>49</td>
<td>HEX NUT</td>
</tr>
<tr>
<td>24</td>
<td>LOCK WASHER</td>
<td>50</td>
<td>LOCK WASHER</td>
</tr>
<tr>
<td>25</td>
<td>FLAT WASHER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>BUSHING</td>
<td>51</td>
<td>STRAINER SCREEN</td>
</tr>
</tbody>
</table>
Figure C–2. Terminal Housing And Cable Assembly
Terminal Housing And Cable Assembly

Parts Identification List

Refer to the separate Parts List Manual for serviceable parts, part numbers and quantities.

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TERMINAL</td>
</tr>
<tr>
<td>2</td>
<td>ALLEN HEAD SETSCREW</td>
</tr>
<tr>
<td>3</td>
<td>LOWER TERMINAL PLATE GASKET</td>
</tr>
<tr>
<td>4</td>
<td>TERMINAL PLATE</td>
</tr>
<tr>
<td>5</td>
<td>UPPER TERMINAL PLATE GASKET</td>
</tr>
<tr>
<td>6</td>
<td>ROUND HEAD MACHINE SCREW</td>
</tr>
<tr>
<td>7</td>
<td>T TYPE LOCK WASHER</td>
</tr>
<tr>
<td>8</td>
<td>INFORMATION PLATE</td>
</tr>
<tr>
<td>9</td>
<td>DRIVE SCREW</td>
</tr>
<tr>
<td>10</td>
<td>TERMINAL HOUSING</td>
</tr>
<tr>
<td>11</td>
<td>TERMINAL CAP</td>
</tr>
<tr>
<td>12</td>
<td>STUD</td>
</tr>
<tr>
<td>13</td>
<td>HEX NUT</td>
</tr>
<tr>
<td>14</td>
<td>CABLE ASSEMBLY</td>
</tr>
<tr>
<td>15</td>
<td>CABLE GRIP</td>
</tr>
<tr>
<td>16</td>
<td>GLAND BUSHING</td>
</tr>
<tr>
<td>17</td>
<td>HEAT SHRINK TUBE</td>
</tr>
<tr>
<td>18</td>
<td>RTV SEALANT</td>
</tr>
<tr>
<td>19</td>
<td>HEX NUT</td>
</tr>
<tr>
<td>20</td>
<td>DYNA-SEAL WASHER</td>
</tr>
</tbody>
</table>
PUMP END DISASSEMBLY

References are to Figure C–1 and Figure C–2.

Review all SAFETY information in Section A.

Follow the instructions on all tags, label and decals attached to the pump.

The following maintenance and repair instructions are keyed to the Pump Model sectional view (Figure C–1) and the Terminal Housing sectional view (Figure C–2), and the accompanying parts lists. Refer to the Parts List manual for the part number and quantity required.

Before attempting to service the pump or control, terminate the power supply to the control box. Close the discharge throttling valve, if so equipped.

WARNING!

The electrical power used to operate this pump is high enough to cause injury or death. Make certain that the control handle on the control box is in the off position and locked out, or that the power supply to the control box has been otherwise cut off and locked out, before attempting to open or service the pump assembly. Tag electrical circuits to prevent accidental start-up.

Use the hoisting bail to remove the pump from the wet well or sump, and move it to a location where the discharge line can be removed. It is not necessary to disconnect a flexible discharge hose before removing the pump. If rigid discharge piping is used, disconnect the piping before attempting to move the pump.

WARNING!

Do not attempt to lift the pump by the motor power cable or the piping. Attach proper lifting equipment to the lifting device fitted to the pump. If chains or cable are wrapped around the pump to lift it, make certain that they are positioned so as not to damage the pump, and so that the load will be balanced.

Select a suitable location, preferably indoors, to perform the degree of maintenance required. If the motor housing is to be opened, the work must be done in a clean, well-equipped shop. All maintenance functions must be done by qualified personnel.

Check the chart in TROUBLESHOOTING, Section B of this manual, to determine the nature of the pump problem. If the problem is mechanical in nature, such as worn pump parts, seal replacement, lubrication, etc., refer to PUMP END DISASSEMBLY for instructions.

If the problem is electrical, complete disassembly may not be required. Refer to Electrical Testing in TROUBLESHOOTING, Section B, and have a qualified electrician check the control box, cable and terminal housing. If the problem is determined to be in the motor, proceed with PUMP END DISASSEMBLY, followed by MOTOR DISASSEMBLY. Otherwise, see Terminal Housing And Power Cable Disassembly.

Carefully inspect any O-rings or gaskets before removal and cleaning to determine if a proper seal and compression existed prior to disassembly. If sealing was faulty or questionable, the cause must be determined and corrected before reassembly. All gaskets and most O-rings must be replaced if disturbed. Repair gaskets and O-rings are listed in the Parts List manual.

PUMP END DISASSEMBLY

Strainer And Wear Plate Removal
(Figure C–1)

To remove the strainer assembly (51), raise the pump slightly, or lay it on its side and disengage the hardware (49 and 50) securing the strainer and base plate (41) to the intermediate (36).

To remove the wear plate (45), remove the hardware (46 and 47) securing it to the diffuser (1). If the impeller (2) is clogged, the debris can usually be removed without further disassembly.
Draining Oil From Seal Cavity
(Figure C -- 1)

If any further disassembly is to be performed on the pump, the seal oil cavity must be drained.

CAUTION

Let the pump cool before removing the seal cavity drain plug. Pressure built up within a hot pump could cause the oil to spray out when the plug is removed. Remove the plug slowly and permit pressure to vent to atmosphere.

Lay the pump on its side with the pipe plugs (37 and 38) facing up. Clean any dirt from around the plugs. Remove the seal cavity drain plug (38), and install a short 1/4-inch NPT nipple in the hole. Tip the pump and drain the seal oil into a clean container. Inspect the oil for water, dirt, or cloudy condition which could indicate lower seal failure or poor gasket seal.

Draining Oil From Motor Cavity
(Figure C -- 1)

If motor problems are suspected, remove the motor cavity drain plug (37), and install a short nipple in the hole. Tip the pump and drain the motor oil into a clean container. Inspect the oil for dark color which could indicate motor overheating, water or dirt contamination. The presence of dirt or water could indicate a breakdown in the waterproof integrity of the motor cavity, probably due to poor gaskets or seals.

Positioning Pump For Disassembly
(Figure C -- 1)

It is recommended that the pump be positioned upside-down during disassembly. To hold the pump in the inverted position, rest the pump securely on blocks. Be careful not to damage the terminal housing and cable assembly (28) while in this position. Use adequate equipment and personnel to safely handle the pump until it is secured.

Impeller Removal
(Figure C -- 1)

Wedge a piece of wood between the vanes of the impeller (2). Remove the impeller nut (43) and washer (42).

Remove the wood block and install the impeller pullers supplied with the pump, and pull the impeller off the shaft. Retain the impeller key (44).

Remove the impeller adjusting shim set (40). For ease of reassembly, tie and tag the shims or measure and record their thickness.

Diffuser Removal
(Figure C -- 1)

To remove the diffuser (1), disengage the hardware (5, 6 and 7) securing it to the intermediate (36). Use caution when removing the hardware; tension on the seal spring will be released. Remove the diffuser. Remove and discard the intermediate and diffuser gaskets (4 and 39).

Seal Removal
(Figures C -- 1 and C -- 3)

The lower seal base ring is secured to the diffuser with a retaining ring. Place a clean cloth on a flat surface and place the diffuser on the cloth with the impeller side down. Remove the retaining ring using snap ring pliers. Press the base ring out of the diffuser.

Remove the lower rotating seal element. Lubricate the rotor shaft (31) and work oil under the lower bellows assembly. Slide the lower bellows assembly off the shaft. Carefully remove the seal spring.

Work oil under the upper bellows assembly and slide it off the shaft. Slide the hooked ends of two stiff wires along the shaft to pull the upper portion of the stationary element. Hook the back side of the element and pull it from the intermediate bore.

If no further disassembly is required, proceed to the appropriate areas in PUMP END REASSEMBLY.
NOTE
Do not disassemble the motor unless it is necessary and a clean, well-equipped shop is available. If the motor housing components are to be serviced, see MOTOR DISASSEMBLY in this section. Do not reassemble the pump end components at this time.

PUMP END REASSEMBLY

NOTE
Reuse of old O-rings, gaskets, or shaft seal parts will result in premature leakage or reduced pump performance. It is strongly recommended that new gaskets and shaft seal assemblies be used during reassembly (see the parts lists for numbers).

Cleaning And Inspection Of Pump Parts
(Figure C–1)

With the pump inverted, stuff a clean tissue into the stationary seal seat bore of the intermediate (36) or wrap a small rag around the shaft to prevent foreign material from entering the motor cavity.

Carefully inspect any O-rings or gaskets before removal and cleaning to determine if a proper seal and compression existed prior to disassembly. If sealing was faulty or questionable, the cause must be determined and corrected before reassembly. Replace any parts as required.

Thorously clean all reusable parts with a soft cloth soaked in cleaning solvent. Remove all O-rings and gaskets, and clean the sealing surfaces of dirt or gasket material. Be careful not to scratch gasket surfaces.

WARNING!

Most cleaning solvents are toxic and flammable. Use them only in a well ventilated area free from excessive heat, sparks, and flame. Read and follow all precautions printed on solvent containers.

Inspect the rotor shaft (31) for damaged threads, scoring, or nicks. Remove nicks and burrs with a fine file or hand honing stone to restore original contours. If the shaft is bent or severely damaged, the rotor and shaft must be replaced as an assembly (see MOTOR DISASSEMBLY).

The shaft seal assembly (3) should not be reused because wear patterns on the finished faces cannot be realigned during reassembly. This could result in premature failure. If necessary to reuse an old seal in an emergency, carefully wash all metallic parts in fresh cleaning solvent and allow to dry thoroughly.

Handle the seal parts with extreme care to prevent damage. Be careful not to contaminate the precision finished faces; even fingerprints on the faces can shorten seal life. If necessary, clean the faces with a non-oil based solvent and a clean, lint-free tissue. Wipe lightly in a circular pattern to avoid scratching the faces.

Inspect the seal components for wear, scoring, grooves, and other damage that might cause leakage. If any components are worn, replace the complete seal; never mix old and new seal parts.

Install the shaft seal as illustrated in Figure C–3.
This seal is not designed for operation at temperatures above 122°F (50°C). Do not use at higher operating temperatures.

Seal Installation

(Figures C–1 and C–3)

Do not unwrap a new seal assembly until time of installation. Cleanliness of seal components is critical, especially the seal faces.

Clean the rotor shaft (31) and seal cavity area of the intermediate (36). Be sure the area is dry and free of lint and dirt. Check the seal bore for burrs or nicks that might prevent a good seal. Remove them with a fine file or emery cloth to restore original contours. If the shaft is bent or damaged, the complete rotor and shaft must be replaced as an assembly. Apply a light coating of oil to the bore.

Unpack the upper seal stationary element and install the O-ring in the stationary seat, taking care not to touch the sealing face. Apply a light coating of oil to the O-ring and the seal bore. Position this subassembly in the intermediate bore with the sealing face up and cover the seal face with a clean tissue. Use your thumbs to press the assembly into the bore. Apply equal pressure on opposite sides until the seat contacts the bore shoulder. Remove the tissue and inspect the seal face to ensure that it is clean and dry. If cleaning is necessary, use a clean tissue to wipe lightly in a circular pattern.

CAUTION

Carefully remove the material stuffed into the seat bore (or unwrap the shaft). Be sure no debris stopped by the material falls into the motor cavity.

NOTE

When pressing seal components onto the shaft, use hand pressure only. A push tube cut from a length of plastic pipe will aid in installing seal components. The I.D. of the push tube should be approximately the same as the I.D. of the seal spring.

Figure C–3. 10214 Seal Assembly
Lightly oil the O.D. of the seal installation tool furnished with the pump, and install it over the threaded end of the shaft with the tapered end toward the end of the shaft.

Unpack the rotating portion of the upper seal. Be certain the seal face of the rotating element is free of grit or surface damage. Because the rotating element may not stay in the bellows retainer when turned upside down, place a small amount of grease at equal spaces on the back of the element and position it in the bellows retainer. The grease should hold the element in position until the seal is installed. Assemble the drive grooves of the rotating element into the drive lugs of the bellows retainer.

Slide the rotating portion of the seal over the seal installation tool and onto the lubricated shaft as shown in Figure C-3. Apply firm, steady pressure on the seal retainer until it slides down the shaft and the seal faces contact.

NOTE
The seal spring will not fully compress until the lower base ring and stationary element is secured to the diffuser with a retaining ring. Place a clean cloth on a flat surface and place the diffuser on the cloth with the impeller side up. Unpack the lower seal base ring, and inspect the seal face to ensure that it is clean and dry. If cleaning is necessary, use a clean tissue to wipe lightly in a circular pattern.

Remove the retaining ring and oil the O.D. of the O-ring. Place a clean tissue over the stationary seal face and carefully press the base ring in the diffuser until fully seated. Do not force the retaining ring into position; cocking the ring may cause improper mating of the seal faces. Secure the base ring with the retaining ring.

Install the intermediate and diffuser gaskets (3 and 39)

Coat the threads of the diffuser capscrews (5) with “Never-Seez” or equivalent compound. Carefully position the diffuser over the shaft and against the intermediate (36). Be careful not to damage the stationary seal face already installed. Install the lockwashers (7) and torque the nuts (6) to 20 ft. lbs. (240 inch lbs. or 2.8 m. kg.)

Impeller Installation
(Figure C – 1)

Inspect the impeller (2) for cracks, broken vanes, or wear from erosion, and replace it if damaged. Clean the threads on the rotor shaft to remove any old thread locking material.

Install the same thickness of impeller adjusting shims (40) as previously removed. Install the impeller key (44) in the shaft keyway, align the impeller keyway, and press the impeller onto the shaft until it seats firmly against the adjusting shims.

After the impeller is installed, coat the threads of the rotor shaft with ‘Loctite Threadlocker No. 242’ or equivalent compound. Install the impeller washer (42) and nut (43). Place a block of wood between the vanes of the impeller to prevent shaft rotation, and torque the impeller nut to 20 ft. lbs. (240 in. lbs. or 2.8 m. kg.).

Remove the block of wood and turn the impeller to check for free rotation. Check the front clearance after installing the wear plate (45).
NOTE
After the impeller has been properly positioned, check for free rotation. Correct any scraping or binding before further reassembly.

Wear Plate Reassembly

(Figure C – 1)

Inspect and thoroughly clean the wear plate (45) and replace it if badly scored or worn. Coat the contacting surfaces of the wear plate with “3-M Sealer” or equivalent compound, and position the wear plate on the diffuser (1). Install the lockwashers (47) on the capscrews (46), then apply “Never-Seez” or equivalent compound on the threads of the capscrews and torque to 5 ft. lbs. (60 in. lbs. or 0.7 m. kg.).

Impeller Clearance

(Figure C – 1)

There should be a clearance of .003 to .010 inch (0.07 and 0.25 mm) between the wear plate (45) and the face of the impeller. Measure this clearance with a feeler gauge.

If the impeller clearance is not within specified limits, remove the wear plate and the impeller, then add or remove impeller adjusting shims (40) as required. Reinstall the impeller and wear plate, and recheck clearance.

Strainer Installation

(Figure C – 1)

Inspect the strainer assembly (51) for cracks, distortion or erosion, and replace it if defective.

Position the strainer squarely on the shoulder of the diffuser (1) and install the base plate (41). Secure with the hardware (49 and 50). Make certain that the strainer seats properly against the shoulder of the diffuser and the base plate.

See LUBRICATION and FINAL ASSEMBLY before putting the pump back into service.

MOTOR DISASSEMBLY

Disassembly of the motor is rarely required except to replace the motor rotor, stator or bearings. Do not disassemble the motor unless it is necessary and a clean, well-equipped shop is available.

NOTE
It is recommended that a pump with a defective motor be returned to Gorman-Rupp, or to one of the Gorman-Rupp authorized Submersible Repair Centers.

WARNING!
The electrical power used to operate this pump is high enough to cause injury or death. Make certain that the control handle on the control box is in the OFF position and locked out, or that the power supply to the control box has been otherwise cut off and locked out, before attempting to open or service the pump assembly. Tag electrical circuits to prevent accidental start-up.

Carefully inspect any O-rings or gaskets before removal and cleaning to determine if a proper seal and compression existed prior to disassembly. If sealing was faulty or questionable, the cause must be determined and corrected before reassembly. Replace any parts as required.

Terminal Housing And Power Cable Removal And Disassembly

(Figure C – 1)

Total disassembly of the terminal housing and power cable (28) is not always required. Disassemble and replace only the parts proven defective by inspection or testing. See Electrical Testing in TROUBLESHOOTING.

The terminal housing and power cable assembly (28) may be serviced without disassembling the motor housing or pump end or without draining the oil from the motor cavity. However, the oil must be drained before attempting to disassemble the motor housing and components.
Secure the pump in an upright position. Remove the hardware (21 and 22) securing the terminal housing assembly to the motor housing (17).

(Figure C – 2)

Carefully raise the terminal housing (10) from the motor housing until the terminals (1) are accessible. Loosen the allen head setscrews (2), and disconnect the motor leads from the terminal posts. Separate the terminal housing and power cable assembly from the motor housing. Remove the lower terminal plate gasket (3).

No further disassembly is required to test the stator or power cable.

To separate the power cable (14) from the terminal housing, remove the nuts (13) securing the terminal cap (11) to the terminal housing (10). Slide the cap back along the power cable. Compress the wire mesh of the cable grip (15) and move it back along the power cable. Oil the bushing (16) and terminal housing bore and pull firmly on the cable. (Allow the oil to leak in around the bushing by agitating the cable in the bore.) After the bushing has been loosened, the cable should pull out far enough to expose the bushing. Apply oil on the cable jacket and slide the bushing back along the cable. Quite often, pressure exerted on the bushing will deform the cable jacket. If such happens, additional oil and effort will be required to remove the bushing.

NOTE
If the rubber bushing cannot be removed from the terminal housing as indicated, it may be necessary to cut the bushing into small pieces or cut the cable.

Push approximately 6 inches (152 mm) of the power cable into the terminal housing so that the terminal plate comes free of the terminal housing. This should permit access to the power cable connections in the terminal plate.

NOTE
Do not remove the heatshrink tubing from the power cable leads unless the power cable or terminals require replacement. If replacement is required, the connections between the power cable leads and the terminals must be sealed with heatshrink tubing before applying the silicone adhesive (see Terminal Housing And Power Cable Reassembly).

To disconnect the power cable, remove the round head machine screw and lockwasher (6 and 7) securing the ground lead to the terminal housing. When shipped from the factory, the connections between the power cable leads and the terminal posts (1) were encapsulated in heat-shrink tubing (17) and bonded to the terminal plate with silicone adhesive (not shown). (In service, the adhesive may have been replaced by potting compound during previous repair.) If damage is extensive and the terminal plate and terminals are to be replaced, simply cut the power cable leads above the terminal collars and heat-shrink tubing, and discard the terminal plate and terminals.

If damage is not extensive and it is necessary to replace the terminal plate (4) or terminal components, carefully cut away the tubing and adhesive. Disconnect the power cable leads from the terminal posts, and separate the terminal plate from the terminal housing (10). Unscrew the nuts (19), and remove the terminal posts (1) and dyna seal washers (20) from the terminal plate.

See Terminal Housing/Power Cable Reassembly if no further disassembly is required.

Rotor Removal

(Figure C – 1)

See PUMP END DISASSEMBLY, and remove all pump end and seal components.

With the pump end disassembled and the motor cavity drained, secure the pump in an inverted position. Remove the hardware (13 and 14) securing the intermediate (36) to the motor housing (17). If necessary, tap around the parting surfaces with a soft faced mallet to break the seal between the intermediate and motor housing. Remove the intermediate and discard the motor housing gasket (32).

Carefully pull the rotor (31) and assembled bearings (18 and 35) from the stator. Use caution to prevent the rotor from falling on the stator windings. If necessary, tap the impeller end of the rotor shaft with a block of wood or soft-faced mallet to loosen the seal between the upper ball bearing (18) and
the motor housing bore. Pull the rotor and assembled bearings from the motor housing.

Reach into the motor housing and remove the bearing spring washer (19) from the bearing bore.

Bearing Removal

(Figure C–1)

CAUTION

To prevent damage during removal from the shaft, it is recommended that bearings be cleaned and inspected **in place**. It is **strongly** recommended that the bearings be replaced **any** time the shaft and rotor assembly is removed.

Before removing the bearings from the rotor shaft, clean and inspect the bearings **in place** as follows.

Clean the bearings thoroughly in **fresh** cleaning solvent. Dry the bearings with filtered compressed air and coat with light oil.

WARNING!

Most cleaning solvents are **toxic and flammable**. Use them only in a well ventilated area; free from excessive heat, sparks, and flame. Read and follow all precautions printed on solvent containers.

Rotate the bearings by hand to check for roughness or binding and inspect the bearing balls. If rotation is rough or the bearing balls discolored, replace the bearings.

The bearing tolerances provide a tight press fit onto the shaft and a snug slip fit into the motor housing and bearing bore. Replace the shaft and rotor (as an assembly), the intermediate or the motor housing if the proper bearing fit is not achieved.

If replacement is required, use a bearing puller or arbor (hydraulic) press to remove the ball bearings from the rotor shaft.

Stator Removal

(Figure C–1)

Do not remove the stator (30) unless it is defective (open windings, insulation resistance low, or stator core damaged). If the stator must be removed, remove the terminal housing as indicated in **Terminal Housing And Power Cable Disassembly**.

Remove the pipe plug (15) located in the motor housing, and loosen the allen head setscrew (16) located underneath the pipe plug.

Position an expandable tool, such as a split disc, approximately 2 inches (51 mm) inside the stator, and expand it tightly and squarely on the I.D. Attach a lifting device to the lifting eye of the tool, and raise the assembly approximately 1 inch (25 mm) off the work surface. Take care not to damage the stator end turns.

The motor housing (17) must be heated with a torch to expand it enough for the stator to be removed. Apply heat evenly to the outside of the motor housing; excessive heat is not required. When the motor housing is sufficiently heated, use a soft-faced mallet to rap alternate edges of the motor housing, and “walk” the stator out. Continue this process until the stator clears the motor housing.

CAUTION

Take care not to damage the stator end turns during removal from the motor housing.

After the stator has been removed, wrap it in clean, dry rags or other suitable material until reassembly. The stator **must** be kept clean and dry. When handling the stator, **do not** set it on the end windings; lay it on its side.

CAUTION

Do not attempt to rewind the stator. Winding tolerances and materials are closely controlled by the manufacturer, and any deviation can cause damage or operating problems. Replace the stator, or return it to one of The Gorman-Rupp Authorized Sub-
mersible Repair Centers or The Gorman-Rupp factory, if defective.

Relief Valve

(Figure C–1)

It is recommended that the relief valve assembly (29) be replaced at each overhaul, or at any time the pump motor overheats and activates the valve. Never replace this valve with a substitute which has not been specified or provided by the Gorman-Rupp Company.

When installing the relief valve, use ‘Loctite Pipe Sealant With Teflon No. 592’ or equivalent compound on the threads.

Hoisting Bail

(Figure C–1)

If the hoisting bail (27) requires replacement, remove the hardware (23, 24 and 25) securing the bail to the motor housing. Make sure the bushings (26) are in place when installing the hoisting bail.

MOTOR REASSEMBLY

CAUTION

Do not attempt to rewind the stator. Winding tolerances and materials are closely controlled by the manufacturer, and any deviation can cause damage or operating problems. Replace the stator, or return it to one of The Gorman-Rupp Authorized Submersible Repair Centers or The Gorman-Rupp factory, if defective.

NOTE

Reuse of old O-rings, gaskets, shaft seal parts will result in premature leakage or reduce pump performance. It is strongly recommended that new gaskets and shaft seal assemblies be used during reassembly (see the parts lists for numbers).

Stator Installation

(Figure C–1)

NOTE

Stator installation involves heating the motor housing. This process must be done quickly. Therefore it is recommended that these steps be performed by two people to promote efficient installation of the stator.

Clean all gasket and O-ring surfaces, completely removing any old gasket and cement material. Inspect the sealing surfaces for burrs, nicks and pits which could cause a poor seal, and replace defective parts as required.

Thoroughly clean the inside of the motor housing (17) with fresh solvent. The interior must be dry and free of dirt or lint.

WARNING!

Most cleaning solvents are toxic and flammable. Use them only in a well ventilated area; free from excessive heat, sparks, and flame. Read and follow all precautions printed on solvent containers.

After the motor housing is thoroughly cleaned, position it on a flat surface with the discharge end down. Do not unwrap the stator (30) until the motor housing has been prepared for stator installation. The stator must be kept clean and dry. When handling the stator, do not set it on the end windings; lay it on its side and block it from rolling.

Test the new stator as indicated in Electrical Testing in TROUBLESHOOTING, Section D, to ensure that no damage has occurred during transit or handling.

NOTE

Remove any drops of varnish from the ends of the stator before installation to ensure proper stack-up height when assembled.

Position an expandable tool, such as a split disc, approximately 2 inches (51 mm) down inside the
stator (opposite the lead wire end), and expand it tightly and squarely on the I.D. Attach a lifting device to the lifting eye of the tool, and carefully lift the assembly. Take care not to damage the stator end turns. Slip a sleeve over the stator leads, or tape them together to protect them during installation.

NOTE

Stator installation involves heating the motor housing. This process must be done quickly to allow the stator to slide into the motor housing before the housing cools.

Heat the motor housing with a torch to expand it enough for the stator to be installed; when heating the motor housing, **make sure** that the stator is clear to avoid a fire hazard, or damage to the windings. Apply heat evenly to the outside of the housing; excessive heat is not required.

When the motor housing is sufficiently heated, position the stator so that the leads are in line with the terminal opening. Carefully lower the stator into the motor housing until fully seated against the housing shoulder. Be careful not to damage the stator lead insulation during reassembly. If the stator “cocks” in the motor housing, remove it and try again.

After the stator is fully and squarely seated on the motor housing shoulder, remove the expandable disc tool. Install the allen head setscrew (16) securing the stator in place; torque the setscrew to 7.5 ft. lbs. (90 in. lbs. or 1.04 m. kg.). Coat the threads of the pipe plug (15) with ‘Loctite Pipe Sealant with Teflon No. 592’ or equivalent, and install the plug over the allen head setscrew. Untape or remove the protective sleeve from the stator leads.

Cover the motor housing with a clean, lint-free cloth while the rotor is being assembled.

Bearing Installation

(Figure C – 1)

Inspect the rotor shaft (31) for damaged threads, scoring in the seal area, and a nicked or damaged keyway. If the bearings were removed, inspect the bearing areas for scoring or galling. Remove nicks and burrs with a fine file or emery cloth. Inspect the rotor area for separated laminations. If the shaft is bent or damaged, or if the laminations are separated, replace the shaft and rotor (a single assembly).

CAUTION

To prevent damage during removal from the shaft, it is recommended that bearings be cleaned and inspected **in place**. It is **strongly** recommended that the bearings be replaced **any** time the shaft and rotor assembly is removed.

The bearings may be heated to ease installation. An induction heater, hot oil bath, electric oven, or hot plate may be used to heat the bearings. Bearings should **never** be heated with a direct flame or directly on a hot plate.

NOTE

If a hot oil bath is used to heat the bearings, both the oil and the container must be **absolutely** clean. If the oil has been previously used, it must be **thoroughly** filtered.

Heat the bearings (18 and 35) to a uniform temperature **no higher than** 250°F (120°C). Slide the bearings onto the shaft until they are fully seated against the shaft shoulder. This should be done quickly, in one continuous motion, to prevent the bearing from cooling and sticking on the shaft.

CAUTION

Use caution when handling hot bearings to prevent burns.

After the bearings have been installed and allowed to cool, check to ensure that they have not moved out of position in shrinking. If movement has occurred, use a suitable sized sleeve and a press to reposition the bearings. Make certain that they are seated squarely against the shaft shoulders.

If heating the bearings is not practical, use a suitably sized sleeve and an arbor (or hydraulic) press to install the bearings on the shaft.
When installing the bearings onto the shaft, never press or hit against the outer race, balls, or ball cage. Press only on the inner race.

CAUTION

Rotor Installation
(Figure C–1)

Use fresh solvent to clean all gasket and O-ring surfaces of the motor housing (17), completely removing any old gasket and cement material. Inspect the sealing surfaces for burrs, nicks and pits which could cause a poor seal. Repair or replace as required.

Use fresh solvent to clean the bearing bore of the upper motor housing and install the spring washer (19) in the bore.

WARNING!

Most cleaning solvents are toxic and flammable. Use them only in a well ventilated area free from excessive heat, sparks, and flame. Read and follow all precautions printed on solvent containers.

Carefully ease the rotor (31) and assembled bearings (18 and 35) into the motor housing and through the stator so that the upper bearing (18) seats squarely in the motor housing bearing bore.

Install the motor housing gasket (32).

Position the bearing bore of the intermediate (36) over the lower ball bearing (35) and slide the intermediate over the bearing until the intermediate seats squarely on the shoulder of the motor housing. Use caution not to cut the gasket. Apply “Never-Seez” or equivalent compound on the threads of the studs (12) and install the hardware (13 and 14); torque the nuts to 20 ft. lbs (240 in. lbs. or 2,8 m. kg.).

Refer to PUMP END REASSEMBLY, and reassemble the pump end components.

Terminal Housing And Power Cable Reassembly And Installation
(Figure C–2)

WARNING!

The electrical power used to operate this pump is high enough to cause injury or death. Make certain that the control handle on the control box is in the OFF position and locked out, or that the power supply to the control box has been otherwise cut off and locked out, before attempting to open or service the pump assembly. Tag electrical circuits to prevent accidental startup. Obtain the services of a qualified electrician, and refer to the wiring diagram(s) in INSTALLATION, Section B, to make electrical connections.

Clean the exterior of the power cable with warm water and mild detergent. Check for obvious physical damage. Check the cable for continuity and insulation resistance (see Electrical Testing in TROUBLESHOOTING). Do not attempt repairs except to cut off either end of the cable; splicing is not recommended. Reinstall any wire tags or terminals which may have been removed.

WARNING!

Never attempt to alter the length or repair any power cable with a splice. The pump motor and cable must be completely waterproof. Injury or death may result from alterations.

Use oil to lightly lubricate the outside of the pump power cable (14), and the bores of the terminal housing (10), terminal cap (11), cable grip (15) and gland bushing (16) for ease of assembly. Slide the terminal cap, cable grip, gland bushing, terminal housing, and terminal plate gasket (5) onto the cable, allowing approximately 3 ft. (1 m) of cable to extend beyond the terminal housing. Temporarily tape the green and yellow (if supplied) ground wires to the cable.
Sealing Terminal Housing Connections
With Silicone Adhesive
(Figure C–2)

WARNING!

Do not attempt to operate this pump unless the power cable leads are properly sealed in the terminal housing. Moisture entering the terminal housing could cause a short circuit, resulting in pump damage and possible serious injury or death to personnel.

When shipped from the factory, the cable leads and terminals (1) were encapsulated in heat-shrink tubing (17), and bonded to the terminal plate (4) with silicone adhesive to provide a water-tight seal. If this insulating material has been damaged or removed during maintenance, it must be replaced using materials and equipment approved by Gorman-Rupp (see the parts list for repair kits).

NOTE
Heat-shrink tubing must be used to seal the power and control cable leads to the terminals before bonding the leads to the terminal plate. If silicone adhesive is not available in the field, a commercially available potting kit may be used to bond the connections to the terminal plate. If this alternate sealing method is used, refer to the instructions in Sealing Terminal Plate Connections With Potting Compound. Use only materials and heating equipment approved by Gorman-Rupp for field repairs.

Before resealing the power and control cables, remove all the old adhesive material (or potting compound) from the leads, terminals, terminal posts, and terminal plate. Inspect all parts for damage, and replace as required.

NOTE
Clean the cable leads and terminal plate in the areas to be sealed with cleaning solvent. Incomplete sealing will occur if the surfaces are dirt, oil or grease coated.

Assemble the terminal posts (1), dyna seal washers (20), and lower terminal nuts (19) to the terminal plate as shown in Figure C–2.

NOTE
Both the power cable and motor conductor leads should be tinned prior to reassembly.

Slide a length of heat-shrink tubing (17) up over each of the power cable leads. Install the leads on the terminal posts and secure them using the hex nuts (19). Slide the tubing down each lead until the terminals are covered. The tubing must extend up the leads far enough to ensure a good seal.

Carefully heat each tube with a commercially available hot air gun capable of producing 750°F (399°C), and shrink the tubes around the cable leads and terminals.

CAUTION
Use only Dow-Corning 737 Silicone Adhesive (see the Parts List Manual for the part number) or potting compound for sealing terminal housing connections. Use of unapproved sealing products will void the pump warranty.

NOTE
Do not use a mold or reservoir with the silicone adhesive.

Figure C–4. Silicone Adhesive Sealing

See Figure C–5 and check terminal locations. Apply a 1/4 in. (6,4 mm) thick layer (maximum) of silicone adhesive around each of the terminal posts as shown in Figure C–4. Remove any adhesive from gasketed surfaces.
All air pockets, voids or gaps in the silicone sealant must be removed to ensure a water-tight seal in the terminal housing. Otherwise, moisture entering the terminal housing could cause a short circuit, resulting in pump damage and possible serious injury or death to personnel.

Allow the adhesive to cure for at least one hour before securing the terminal housing to the motor housing.

Figure C-5. Terminal Housing Wiring Connections

Sealing Terminal Plate Connections With Potting Compound

(Figure C-2)

Potting compound and silicone adhesive have the same electrical properties when correctly applied. Silicone adhesive is used at the factory to facilitate production. A commercially available potting kit (Products Research Corp., part number PR-1201-Q Class 1 potting compound, Chemseal potting compound, part number GS3100, or equivalent) may also be used to seal the connections.

Clean and assemble all terminal components as indicated in **Sealing Terminal Plate With Silicone Adhesive**. Use medium grit sandpaper to prepare the surface of the terminal plate in the area where the potting mold will be installed.

NOTE

Clean the cable lead and terminal plate in the areas to be potted with cleaning solvent before potting. Potting compound will not adhere properly to oil or grease coated surfaces.

Trim the potting mold so it is just long enough to cover the terminal post studs. Slide the potting mold up over the leads of the power cable and control cable.

Secure each cable lead as described in the previous section. Slide the potting mold down over the terminal posts and onto the terminal plate. Hang the cable in a vertical position with the terminal plate horizontal. The cable leads and terminals should be centered in the potting mold. Use quick-setting cement, such as ‘3-M Weather Seal’ to secure the potting mold to the terminal plate.

WARNING!

Most potting base compounds contain toluene; use adequate ventilation and avoid prolonged breathing of vapors. Most potting accelerators contain lead;
avoid ingestion or prolonged contact with the skin. Read and follow all warnings and recommendations accompanying the potting kit.

See the instructions with the potting kit regarding application life and setting and curing time. Mix the base compound and accelerator and fill the mold until the electrical connections are completely insulated. Tamp the potting material to eliminate air bubbles and ensure the material has completely covered the area around the terminal posts.

NOTE
The potting compound must completely cover the terminal posts and lead connections.

When potting has been completed, leave the terminal plate assembly undisturbed until the potting material has cured. Complete curing usually takes about 24 hours. Curing time can be shortened by using a heat lamp, but be careful not to melt the potting or potting mold, or burn the cable. When the potting material is no longer “tacky” to the touch, it has cured.

Terminal Housing Installation

(Figure C–2)

After the terminal housing has been sealed, slide the housing down the cable. Untape the ground lead(s) and secure them to the terminal housing with the hardware (6 and 7). Be sure the leads make good contact with the housing.

Pull gently on the power cable to remove any excess length from within the terminal housing. The terminal plate should fit loosely against the terminal housing.

Lubricate the upper bore of the terminal housing, and slide the terminal bushing (16) into place. Slide the cable grip (15) and terminal cap (11) into place and install the nuts (13). Do not fully tighten the nuts at this time.

Position the lower terminal plate gasket (3) on the terminal plate (4).

Attach the appropriate motor lead (T1, T2, T3) to each terminal post (1) using the allen head set-screws (2).

NOTE
A small amount of gasket adhesive may be used to hold the upper and lower terminal plate gaskets in place to ease assembly.

(Figure C–1)

Position the terminal housing, terminal plate and gasket against the upper motor housing. If required, rotate the terminal housing and twist the motor leads to remove excess slack.

Coat the threads of the motor housing studs (20) with ‘Never-Seez’ or equivalent, and secure the terminal housing assembly to the motor housing with the hardware (21 and 22). Torque the nuts evenly in a cross sequence to 11 ft. lbs. (132 in. lbs. or 1.5 m. kg.). Tighten the nuts (13, Figure C–2) drawing the terminal gland into the terminal bore. Do not overtighten the nuts and damage the the terminal gland or hardware.

NOTE
A .12 in. (3.05 mm) gap is required between the terminal gland cap flange and the terminal housing when tighten the nuts.

See FINAL ASSEMBLY and VACUUM/PRESSURE TESTING followed by LUBRICATION.

FINAL ASSEMBLY

(Figure C–1)

If the discharge flange (9) was removed from the motor housing, replace the discharge flange gasket (8). Apply ‘Never-Seez’ or equivalent compound on the flange studs (10), and secure the flange with the nuts (11).

If the hoisting bail (27) was removed, install the bail bushing (26) and secure the bail to the motor housing with the hardware (23, 24 and 25).

Connect the discharge hose, and reposition the pump. If rigid piping or long hose is used, reposition the pump, then connect the piping.
VACUUM/PRESSURE TESTING

To ensure the water-tight integrity of the pump, it is recommended that the motor and seal cavities be vacuum and pressure tested any time the seal and/or motor are serviced. The seal cavity must be pressurized to prevent separation of the seal faces or unseating the stationary seal seat between the seal and motor cavities. Use a manometer with a range of 30 to 0 to 30 inches of mercury to perform the vacuum test. Do not use a vacuum gauge. Vacuum gauges are not sensitive enough to detect minor leaks.

Drain all of the oil from both the seal and motor cavities before performing the test. Oil within the motor cavity will be drawn into the system, resulting in damage to the vacuum pump or manometer.

It is recommended that a vacuum pump be used to draw the vacuum on the motor cavity. If a vacuum pump is not available, a compressor/venturi system may be used. If the compressor/venturi cannot draw the vacuum level shown in Table C-1, draw the motor cavity vacuum down as far as the system will allow, then pressurize the seal cavity so the differential between the two cavities is the same as the differential between the readings shown in the table.

If a compressor/venturi system is used, install full-closing ball-type shutoff valves with quick-disconnect fittings in the pipe plug holes in both the motor and seal cavities. This will allow the pressure (or vacuum) to be maintained while using the compressor to perform the second portion of the test.

Figure C-6 shows a simple schematic for setting up either a vacuum pump or a venturi/compressor test system.

Table C-1 shows the motor cavity vacuum and seal cavity pressure readings for the test, and the duration to maintain each reading. Any change in the readings during the test indicates a leak which must be identified and corrected before putting the pump back into service.

Table C-1. Vacuum/Pressure Test Data

<table>
<thead>
<tr>
<th>Pump Model</th>
<th>Motor Cavity Vacuum (In. Hg.)</th>
<th>Duration (Minutes)</th>
<th>Seal Cavity Pressure (PSI)</th>
<th>Duration (Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2A</td>
<td>30</td>
<td>1</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>

LUBRICATION

Seal Cavity

Check the oil level in the seal cavity before initial startup, after the first two weeks of operation, and every month thereafter.

Check the oil level only when the pump is cool. If the oil level plug is removed...
when the pump is hot, pressure in the seal cavity can cause hot oil to be ejected as the plug is removed.

To check the seal cavity oil, lay the pump on its side and remove the seal cavity plug (38) in the intermediate. Tip the pump and drain off a small amount of oil into a transparent cup. If the oil level is abnormally low, or the color milky or dark, refer to Draining Oil From Seal Cavity in this section for instructions and troubleshooting tips. If the oil is clear, apply 'Loctite Pipe Sealant With Teflon No. 592.' or equivalent to the threads of the pipe plug, before reinstalling the plug.

To fill the seal cavity, remove the seal cavity drain/fill plug (38) and add the recommended grade of submersible pump oil. Refer to the Installation and Operations Manual for positioning of the pump during filling of the seal cavity. Apply 'Loctite Pipe Sealant With Teflon No. 592.' or equivalent to the threads of the pipe plug, before reinstalling the plug.

See Table C – 2 for quantity of lubricant when lubricating a dry (overhauled) pump. See Table C – 3 for lubricant specifications.

The grade of lubricant used is critical to the operation of this pump. Use premium quality submersible pump oil as specified in the following table. Oil must be stored in a clean, tightly closed container in a reasonably dry environment.

Table C – 2. Oil Quantity

<table>
<thead>
<tr>
<th>Pump Model</th>
<th>Seal Cavity</th>
<th>Motor Cavity</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2A</td>
<td>8 ounces (0.24 liter)</td>
<td>32 ounces (0.95 liter)</td>
</tr>
</tbody>
</table>

Table C – 3. Pump Oil Specifications

<table>
<thead>
<tr>
<th>Specifications:</th>
<th>Premium high viscosity index, anti-wear hydraulic oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Premium high viscosity index, anti-wear hydraulic oil</td>
</tr>
<tr>
<td>Viscosity @ 100°F (38°C)</td>
<td>110 to 155</td>
</tr>
<tr>
<td>Viscosity @ 210°F (99°C)</td>
<td>40 to 50</td>
</tr>
<tr>
<td>Dielectric</td>
<td>26,000 (volts-min)</td>
</tr>
</tbody>
</table>

Recommended supplier: Gulf Oil Company | Gulf Harmony HVI AW 26
Acceptable alternate suppliers: Gulf Oil Company | Gulf Harmony 32 AW
Texas Oil Company | Rando HD 32 or HD AZ 32
Sun Oil Company | Sunvis 816 or 916
BP (Also Boron) | Energol-HLP 32
Shell Oil Company | Telus 32, Telus T-23 or T32
ARCO | Duro 32
Exxon (Also Esso) | Nuto H 32
Petro-Canada | Harmony HVI 22

Motor Housing Cavity

With the pump in an upright position, remove the pressure relief valve (29) on the top of the pump. See Table C – 2 and add of the recommended grade of lubricant (Table C – 3) to the motor cavity. Maintain the oil at this level. Apply 'Loctite Pipe Sealant With Teflon No. 592.' or equivalent sealant to the threads of the relief valve (29). Reinstall and tighten.
CAUTION

Never attempt to fill the motor cavity through the drain plug (37) opening. A volume of air must be trapped above the motor to permit thermal expansion of the motor oil.
For U.S. and International Warranty Information, Please Visit www grpumps com/warranty or call:
U.S.: 419−755−1280
International: +1−419−755−1352

For Canadian Warranty Information, Please Visit www grcanada com/warranty or call:
519−631−2870